\qquad Per: \qquad
\qquad Summary of Molecular Geometry

WORKSHEET \#6a
In the "Molecular Geometry" column, write one the following molecular shapes in the appropriate spot in the table.
Note that some terms may be used more than once.

bent	seesaw	T-shaped	trigonal bipyramidal
linear	square planar	tetrahedral	trigonal pyramidal
octahedral	square pyramidal	trigonal planar	

In the "Example of a Molecule" column, write one of the following chemical formulas in the appropriate spot in the table.

CO_{2}	CIF_{3}	PF_{3}	SF_{2}	SO_{2}	XeF_{2}
CF_{4}	CIF_{5}	PF_{5}	SF_{4}	SO_{3}	XeF_{4}

In the "Example of a Polyatomic lon" column, write one of the following chemical formulas in the appropriate spot in the table.

$\mathrm{Br}_{3}{ }^{-}$	$\mathrm{ClO}_{2}{ }^{-}$	$\mathrm{NO}_{2}{ }^{+}$	$\mathrm{PF}_{4}{ }^{-}$	$\mathrm{SO}_{4}{ }^{2-}$		
	$\mathrm{ClO}_{3}{ }^{-}$	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{PF}_{6}{ }^{-}$	$\mathrm{SF}_{5}{ }^{+}$		
	$\mathrm{ClF}_{4}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}$				

In the "Total Number of Valence Electrons" column, write one of the following numbers in the appropriate spot in the table.
$16 \quad 18 \quad 20$
22
24
26
28
$\begin{array}{llll}32 & 34 & 36 & 40\end{array}$
42
48

Bonding Domains around central atom	Nonbonding Domains around central atom	Total\# of Electron Domains around central atom	Electron Domain Geometry	Molecular Geometry	Example of a Molecule	Example of a Polyatomic lon	Total Number Ef Valence Electrons
2	0	2	linear				
3	0	3	trigonal planar				
2	1	3	trigonal planar				
4	0	4	tetrahedral				
3	1	4	tetrahedral				
2	2	4	tetrahedral				
5	0	5	trigonal bipyramidal				
4	1	5	trigonal bipyramidal				
3	2	5	trigonal bipyramidal				
2	3	5	trigonal bipyramidal				
6	0	6	octahedral				
5	1	6	octahedral				
4	2	6	octahedral				

Use the periodic table to determine the total number of valence electrons for each molecule or polyatomic ion.

Chemical Formula	Total Number of Valence Electrons
CO_{2}	
CF_{4}	
ClF_{3}	
CIF_{5}	
PF_{3}	
PF_{5}	
SF_{2}	
SF_{4}	
SF_{6}	
SO_{2}	
SO_{3}	
XeF_{4}	

Chemical Formula	Total Number of Valence Electrons
Br_{3}^{-}	
$\mathrm{ClO}_{2}{ }^{-}$	
$\mathrm{ClO}_{3}{ }^{-}$	
ClF_{4}^{-}	
$\mathrm{NO}_{2}{ }^{+}$	
$\mathrm{NO}_{2}{ }^{-}$	
NO_{3}^{-}	
PF_{4}^{-}	
PF_{6}^{-}	
SO_{4}^{2-}	
SF_{5}^{+}	

Write the total number of valence electrons for each of the following Lewis dot structures.
Lewis Dot Structure $\left.\begin{array}{c}\text { Total } \\ \text { Number } \\ \text { of Valence } \\ \text { Electrons }\end{array}\right]$
Lewis Dot Structure $\left.\begin{array}{c}\text { Total } \\ \text { Number } \\ \text { of Valence } \\ \text { Electrons }\end{array}\right]$

For each type of molecular geometry, identify the number of bonding and nonbonding domains around the central atom. In addition, write the name of the molecular shape.

Molecular Geometry	Bonding Domains around central atom	Nonbonding Domains around central atom	Name of Molecular Shape

Molecular Geometry	Bonding Domains around central atom	Nonbonding Domains around central atom	Name of Molecular Shape

